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Abstract. The coupling between lattice modes and intramolecular modes in a molecular 
crystal is described by a mean-field model. The effect of this coupling is investigated 
semi-quantitatively and it is found that in certain cases a molecular crystal becomes unstable 
against both an ordered crystal structure and a completely disordered structure. This 
instability can be eliminated if the system is allowed to take on either a mesomorphic 
structure or a structure characterised by space-inhomogeneous order parameters. 

1. Introduction 

Molecular crystals may exhibit several kinds of partially ordered (liquid or solid) 
phases between the low-temperature fully ordered crystal phase and the high- 
temperature isotropic liquid phase. The intermediate phases differ in their overall 
symmetry, i.e. the symmetry of the structure defined by positions and orientations of 
the molecules combined with the symmetry of the molecules themselves. Usually a 
phase is homogeneous in space, i.e. if defects are neglected, there is translational 
invariance over a scale length of a very few average intermolecular distances. However, 
phases exhibiting a domain structure or characterised by a spatial modulation over a 
much greater distance have been observed in molecular crystals: see, e.g., Luzzati and 
Tardieu (1974), Sigaud et a1 (1981) and Kistenmacher et a1 (1980). 

Many dedicated theories, often providing good predictions, account for certain 
phase transitions. These theories, most of which are only phenomenological, cannot 
be extended to cover a wider temperature range, from the solid to the isotropic liquid 
phase. On the other hand, there are a few theories which, starting from the crystal 
phase, account for the main intermediate phases observed in molecular Crystals, i.e. 
those exhibiting orientational disorder in crystal and/or orientational order in liquids 
(Pople and Karasz 1961, Kobayashi 1970). These theories assume rigid molecules and 
are not able to account for all kinds of phase transitions observed in molecular crystals. 
The purpose of this paper is to show in quite a general form that the interplay between 
internal and external modes should also be included in a theory of melting of molecular 
crystals in order to explain the occurrence of space-modulated structures as well as 
the fact that mesomorphic behaviour cannot be predicted only from the properties of 
the isolated molecule. 

Throughout this paper the set of lattice modes (involving the centres of mass of 
the molecules) will also be designated as ‘external modes’, while the terms ‘internal 
modes’ or ‘intramolecular motions’ will be used to indicate all those motions (be they 
vibrational or rotational) of the single molecule which do not involve the centres of 
mass. The reason for treating all ‘internal modes’ (in the above sense) on the same 
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footing is that any kind of intramolecular motion qualitatively has the same effect on 
the intermolecular potential (i.e. yields a softening of the latter), as will be discussed 
in the next section. 

Previous work (Micciancio and Vassallo 1982, Giammarinaro and Micciancio 1984) 
has shown that several ‘strange effects’ (including hysteresis and reentrant phase 
transitions) observed in many kinds of physical systems can be accounted for qualita- 
tively by essentially the same model featuring two coupled order parameters: different 
effects arise for different ranges of values of the coupling between the two order 
parameters. In this paper we refine the model and adapt it to the melting of a molecular 
crystal. The latter is described as a composite system made up of two subsystems: the 
lattice subsystem (defined as the set of centre-of-mass degrees of freedom) and the 
subsystem of the intramolecular degrees of freedom (referred to as subsystem M). For 
each subsystem we define an order parameter and an equation of state (a phenomeno- 
logical one for the lattice) which contains a control parameter whose value depends 
on the order parameter of the other subsystem. The properties of the coupling between 
the two subsystems are derived from general considerations of the intermolecular 
potential and the dynamics of the whole system. We show that for a suitable coupling 
between lattice modes and internal modes a molecular crystal exhibits a finite interval 
of temperature in which its structure must be different from both a fully ordered solid 
and an isotropic liquid. Our model cannot provide a direct indication about which 
structure the system must take on to cope with this instability against the two extreme 
kinds of structure. However, it is argued that, between the low-temperature fully 
ordered phase and the isotropic liquid phase, there must be an intermediate phase 
exhibiting orientational disorder in the crystal or orientational order in the liquid or 
else a space-modulated structure, depending on the overall symmetry of the system. 

2. Theory 

In order to build the model we assume that the two subsystems composing a molecular 
crystal can be kept in contact with two independent heat baths at the temperatures Or 
for the lattice subsystem and OM for the subsystem M of the internal degrees of freedom, 
respectively. We also assume that internal motions are faster than lattice motions. 

Let us first consider a lattice of undeformable molecules (i.e. OM = 0), which is 
expected to melt at some well defined temperature TL. On cooling the liquid we usually 
expect the occurrence of supercooling, a phenomenon related to the existence of 
metastable states of the liquid. In order to simplify our phenomenological picture of 
melting and freezing we neglect this kind of metastability and assume that in the lattice 
subsystem freezing occurs at the same temperature TL as melting. 

We know that the symmetry change occurring at the solid-liquid phase transition 
causes this transition to be first order. For simplicity we assume that our subsystem 
of undeformable molecules exhibits no mesophase and that a single scalar order 
parameter QL adequately describes the solid-liquid phase transition. QL might be 
related, e.g., to the amplitude of the density component with wavevector corresponding 
to a basic lattice periodicity. In a solid of rigid molecules, QL is expected to be a 
continuous and monotonically decreasing function of Or which vanishes with a discon- 
tinuity at OL = TL. We write 

Or =f (Odu( T L /  er - 1) (1) 
af /aeLa 0. (2) 
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In equation (1) u ( x )  is the unit step function: 
u ( x )  = 0 x s o  

u(x) = 1 x > 0. 
(3)  

The melting temperature of the lattice certainly depends on the intermolecular potential. 
The thermal excitation of internal modes introduces time-varying terms in the pair 
potential. However a time-independent effective potential is expected to yield qualita- 
tively correct results because internal motions have been assumed faster than lattice 
motions. In any case the repulsive part of the pair potential is expected to become 
softer and softer as OM increases, i.e. as the internal modes become excited. This 
softening is a second-order effect in the amplitude of the internal modes. However 
there may be skeletal modes whose amplitude can become an appreciable fraction of 
the molecular size. In the case of rotational motions of the whole molecule or a part 
of it a sizable softening of the potential is also expected to occur. In the following 
the term internal modes’ will be especially referred to those modes, be they vibrational 
or rotational, which, when thermally excited, yield a sizable softening of the inter- 
molecular potential. 

The effects of the softening of a repulsive pair potential on the melting temperature 
of a lattice of point-like atoms has been investigated by Stillinger (1976) and Stillinger 
and Weber (1977,1980), who adopted a Gaussian pair potential. Stillinger (1976) 
shows that the melting temperature of such a lattice, TL, exhibits a maximum versus 
the crystal reduced density p * = p A 3 ,  where p is the number density and A is the 
halfwidth of the potential. A simple change of variables yields the curve of figure 1, 
which shows the melting temperature of the lattice plotted against A for a fixed number 
density. The results of Stillinger rely on the fact that (a) for vanishing A a system of 
Gaussian particles behaves like a hard-sphere system; (b) for diverging A the disordered 
state is thermodynamically more stable than the crystal at all finite temperatures (this 
second result applies to a larger class of potentials). In both these extreme cases the 
melting temperature is 0 K. Hence TL must exhibit a maximum at some finite value 
A = A c .  

The physical meaning of the arguments underlying this behaviour makes it plausible 
that the same also occurs in the case of more realistic pair potentials than those used 
by Stillinger. In this case A will take on the meaning of a general parameter measuring 
the softness of the potential. 

Stiff pair 
potential 

Soft pair 
potential 

I 

kc 
h 

Figure 1. Qualitative plot of the melting temperature TL of a lattice against the parameter 
A measuring the softness of the repulsive part of the interparticles potential. TL exhibits 
a maximum at A = A , .  The potentials can be roughly labelled as stiff or soft. See text for 
further details. 
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According to figure 1 the molecules can be roughly labelled as stiff ( A  < A,) or soft 
( A  > A,), the terms ‘stiff’ and ‘soft’ being referred to the pair potential. It will be, 
respectively, either 

aTL/aA > o or aTJaA <O. (4) 

Now let us look at the subsystem M of the intramolecular degrees of freedom. The 
frequencies of the internal modes of a molecule to some extent depend on the local 
potential generated by all the other molecules. In the absence of lattice vibrations all 
the molecules see the same local potential and exhibit the same spectrum of internal 
modes. (We neglect the coupling between modes of different molecules.) The subsys- 
tem M can thus be treated as n identical particles at the temperature O M .  From simple 
statistics we may get Q M ,  the fraction of particles in the ground state. Q M ,  which is 
a convenient parameter measuring the average internal disorder caused by the thermal 
excitation of the internal modes of the molecules, is a smooth continuous and monotoni- 
cally decreasing function of O M .  The rate of decrease of Q M  as OM increases is ruled, 
to quite a large extent, by the energy of the lowest internal mode T M ,  while the detailed 
distribution of the energy levels higher than the first plays a minor role. In particular 
we may state that, for finite O M  a decrease of T M  always yields a decrease of Q M .  We 
write 

The thermal excitation of lattice modes, corresponding to a decrease of QL, produces 
a modulation of the crystal potential and hence a similar modulation of the frequency 
of the internal modes. This is observed experimentally as a broadening of the far- 
infrared absorption bands as well as their shift to lower frequency as the temperature 
increases. The parameter TM of equation ( 5 )  is thus coupled to the lattice order 
parameter: 

d T M / d Q L =  K M  <o. (8) 

The excitation of internal modes, i.e. a decrease of QMr is expected to yield a softer 
effective pair potential: 

d A / a Q M  G 0. (9) 

This relationship allows us to link the melting temperature of the lattice to the 
intramolecular order. Using equations (4) and (9) we get 

( loa) K L  = a TJa QM = (a TJdA ) (dA / a Q M )  G O 

for stiff molecules and 

K L Z O  ( lob)  

for the soft ones. For simplicity we assume that, at least in the temperature range of 
interest, a stiff pair potential does not become soft as the temperature increases. That 
is, we assume that K L  is a monotonic function of Q M .  

The quantities KM and KL defined in (8) and (10) will be referred to as coupling 
parameters. 
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If we let OL = OM = T in all equations (1)-(9) we get a qualitative description of 
the behaviour of the whole composite system as a function of temperature. From 
equations ( l ) ,  (3) and (5)  we obtain 

Q L  =f( TL/ T )  T <  TL ( I l a )  

QL=O T >  TL (lib) 

QM = g (  T M /  (12) 

In equations (1 l a )  and ( 1  1 b )  explicit use has been made of equation (3). 
These two equations are coupled by two more equations linking TL to QM and TM 

to Q L ,  respectively. For simplicity, and with no loss of generality as far as the qualitative 
features of the result are concerned, we expand T,( QM) and Tu( QL) in Taylor series 
and drop second-order and higher terms. This is equivalent to taking the coupling 
parameters as constants. Using equations (8) and (10) we obtain 

TL= TT + KLQM (13) 
T M = T & + K M Q L .  (14) 

The properties of the solutions QL( T )  and QM( T )  of the system of equations ( 1  1)-( 14) 
can be easily derived by means of graphical methods from the properties of f  and g 
stated in equations (2), (6) and (7). The task is even simpler if we put f (  TL/ T )  = 1: 
equation (2) is satisfied and the qualitative features of the result do not change. 

In this case if we take QL = 1 equations ( 1  l a )  and (13) yield 

T <  T f + K L Q M  (15) 

QM = g[( 7% + KM)/  TI.  (16) 
As shown in figure 2( a )  for KL> 0 and in figure 2( b )  for KL < 0 equations (15) and 
(16) define T , ,  the upper bound of the range of validity of equations ( l l a )  and (16). 

while equations (14) and (12) yield 

.... 

Figure 2. Graphical solution (full curves) of equations (11)-(14). ( a )  When KL>O the 
solution is two-valued for To< T <  T, .  ( b )  When K , > O  the equations have no solution 
for T, < T <  To. In both cases 1 T ,  - To/ vanishes if either KL or K ,  vanish. As discussed 
in the text the instability appearing in ( a )  may lead to the onset of mesophases or of 
space-modulated structures. 
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If we let QL=O we obtain in a similar way (see figure 1 )  

T >  Tf+KLQM (17) 

Qh4 = g( T * M /  T ,  (18) 

which define To, the lower bound of the range in which equations (1 16) and (18) hold. 
As shown by figure l(a),  when equation (106) holds, TI > To and the solutions 

QL( T) and QM( T) are two-valued in the range To < T < T,. In the opposite case, 
when equation ( loa)  holds, TI < To and the system of equations (11)-(14) has no 
solution in the range TI < T 

The amplitude of the intermediate range, AT = I TI - T0l is a monotonically increas- 
ing function of KM and When either coupling parameter vanishes AT also 
vanishes. 

An inspection of the graphical solutions of figure 2 shows that using non-linear 
TL( QM) and TM( QL) relationships instead of equations (13) and (14) does not qualita- 
tively affect the solutions, provided that the monotonicity of T L ( Q M )  and T M ( Q L )  is 
granted. 

To. 

3. Discussion 

Although the model of molecular crystal worked out in the last section is quite crude, 
the results obtained are based on the inequalities (2) and (6)-(9) which are certainly 
correct. Our results show that the interplay between internal and external modes can 
produce two kinds of synergetic effects, whose physical meaning will be discussed now. 

When K L >  0 the interplay between the lattice order and the intramolecular order 
forces the latter to exhibit a discontinuity when the former does. The presence of the 
temperature range To< T <  T, in which the solutions of equations (11)-(14) are 
two-valued was expected on the ground of previous work (Micciancio and Vassallo 
1981, Giammarinaro and Micciancio 1984). This feature of the solutions leads us to 
expect that the composite system exhibits metastability in that range of temperature. 
Since in writing down equations (1 1)-( 14) we neglected all metastability of the isolated 
subsystems, the metastability present in the range To < T < T, is to be ascribed to an 
effect of the coupling between the lattice modes and the intramolecular modes. This 
synergetic effect is an additional mechanism contributing to the onset of the metastable 
states of real molecular substances composed by soft deformable molecules. This 
matter needs to be investigated in more detail. Work is under way. 

Another synergetic effect arises when KL < 0. Equations ( 1  1)-( 14) have no solutions 
in the range T, < T < To because they become overconstrained in that range. The 
constraints which make the equations unsolvable arise because we obtained the 
equations using the implicit assumption that the state of the composite system could 
be described by just the same parameters QL and QM defined in the isolated subsystems. 
In particular the composite system was left with no possibility to take on a structure 
different from either that of the lattice subsystem, described by QL, or that of an 
isotropic liquid. 

As shown by several authors (Pople and Karasz 1961, Kobayashi 1970) the single 
scalar order parameter describing the lattice can be substituted by a set of several 
parameters in a theory predicting the existence of phases with an overall symmetry 
intermediate between that of the fully ordered solid and that of the isotropic liquid; 
these intermediate phases have been identified with liquid crystals or with plastic 
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crystals. These models are modifications of older theories of melting which are 
extended, through the addition of terms describing anisotropic interactions, to cover 
the cases of liquid and plastic crystals. In these models, letting the anisotropy vanish 
just causes the cancellation of the possibility of intermediate phases. Our model only 
considers the effects of the interplay between internal and external modes, i.e. a kind 
of interaction which is certainly present in all molecular crystals irrespective of the 
symmetry of the intermolecular interactions, and which yields a softening of the latter. 
When this softening occurs in stiff molecules ( K ,  < 0), according to our model some 
intermediate phase must occur between the fully ordered solid and the isotropic liquid, 
although our model is unable to provide information about the symmetry of the 
intermediate phase. 

Our model does not use explicitly the symmetries of the phases of the interacting 
subsystems, but only the fact that one of them is expected to undergo a first-order 
phase transition. It has been shown that, besides the solid-liquid transition, the 
transition between any liquid crystalline mesophase and the isotropic liquid also must 
be first order (de Gennes 1969, Goshen et a1 1971). On the other hand first-order 
transitions may also occur between mesophases. 

Arguments similar to those reported in § 2 can be applied to the interplay between 
internal and external modes near any phase transition which is expected to be first 
order. If a softening of the molecular potential causes the shift of this transition to 
higher temperature and no structure with an intermediate symmetry is allowed to exist 
between the two phases, the system should be forced to take on a spatially modulated 
structure, i.e. a superlattice or a domain structure. Such structure have been indeed 
observed in smectic liquid crystals both lyotropic (Luzzati and Tardieu 1974) and 
termotropic (Sigaud et a1 1981) and in systems with a quasi-one-dimensional structure 
(Kistenmacher et a1 1980). 
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